

 Navigation

 	
 index

 	
 next |

 	Try-try 0.1 documentation

Welcome to try-try documentation!

	Project concepts

	Project Installation

	Module writing howto

	LXC configuration

	GitHub repository is available at http://github.com/imankulov/trytry

	This is a template to write new tests http://github.com/imankulov/try_app_template

	Reference installation resides here http://try-try.me

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Try-try 0.1 documentation

Project concepts

Try-try is the Django application which allows for developers to quite
easily create test flows. There is quite a lot of similar web services,
but the majority of them use browser-side javascript interpretation
of the language in question, which effectively limit the set of languages
to be interpreted that way.

Our apprach is to use “fair server-side intepreter” in isolated environment.
Every new session creates a virtual environment where users (believe you or not)
have superuser privileges.

Test writer writes a specially crafted steps.py file, containing test
steps, one by one, and define the environment, which everything should be
executed.

See next modules of the documentation to get more detailed view about the
application and feel free to visit our http://www.try-try.me reference
installation.

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Try-try 0.1 documentation

Project Installation

We should admit. The project is quite hard to install. And the first thing,
it is pretty much useless in Windows environment.

We tested its work on Debian, Ubuntu and Gentoo. Ubuntu should be considered
as the best variant for installing on, no matter locally or remotely.

Local installation

Local installation differs from remote one in that sense that it is considered
as “development” rather than production. Usually you don’t need no LXC
containers, no special webserver, nothing like this. Just a plain old:

$./manage.py runserver

Although even that it can be not easy to install.

So, there are the steps you need to make:

Clone the repository, create a new virtual environment, and install all the
dependencies

$ git clone https://github.com/imankulov/trytry.git
$ cd ./trytry
$ mkvirtualenv --system-site-packages trytry
$ workon trytry
$ pip install -r requirements.pip

Copy localsettings.py.example to localsettings.py and adjust it according
to your needs

$ cp -a trytry/localsettings.py.example trytry/localsettings.py
$ editor trytry/localsettings.py

Type ./manage.py trytry_sanity_check. It is a special command which tries
to estimate the envornment it works within, and give some advice on how to
fix. Usually it asks to setup a timelimit system package, which is as trivial
as

$ sudo apt-get install timelimit

And then do

$./manage.py syncdb --migrate
$./manage.py runserver

Then go to http://localhost:8000 . I hope it will work for you.

Okay, it’s not very hard when it works, but if it doesn’t .. yeah, it doesn’t.

Remote installation

We wrote a fabric script which is intender to transform your bare Ubuntu server
to a fully fledged try-try platform. The script and accompanying files reside
in the deploy subdirectory of the project.

First before, make sure you have root ssh access to the server. Many
Ubuntu-based virtual servers don’t provide SSH root access, assuming that
you use “sudo” when it is needed, but the fabric script we created won’t work
unless you run it as root.

Then, review server_configs directory, and change something according
to your needs.

Then, launch a basic setup installation command:

fab -H root@servername setup

The same command can be used to update the project. Then, providing you need
LXC setup, run:

fab -H root@servername lxc_setup

The command creates a number of LXC containers, as described in the to
of fabfile.py.

Hopefully, it work out. If so, then visit the webpage of your remote server.
Nginx should respond with a funny collage of some geeky guys.

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Try-try 0.1 documentation

Module writing howto

We hope you already familiarized with the system concept, and willing to
write some test flows for the application.

You don’t need to start from scratch here, to simplify your job we prepared
an application template. Clone the repository from Github

$ git clone https://github.com/imankulov/try_app_template.git

Then, in the project directory, type:

$./manage.py startapp --template path/to/try_app_template my_app

A new app named my_app will be created, you should add it to the list of your
installed apps in settings.py or localsettings.py.

The core of the test application is the steps.py file where a whole
test flow is described.

Below is a summary description of the file contents:

__flow__ variable

Flow variable describes the flow in a nutshell, and contains the links
to steps which should be done to successfully pass the test.

from trytry.core.utils.lxc import lxc_setup, lxc_teardown

__flow__ = {
 # class names in this module, which will be used as steps
 'steps': ['Step1', 'Step2'],
 # the name of LXC container template which will be used to set up
 # a base container for your user.
 'lxc_container': 'python',
 # Setup and teardown functions. You can define them as functions or,
 # exactly like steps, as strings within your module.
 # Function accept one parameter: an initialized Flow object
 'setup': lxc_setup,
 'teardown': lxc_teardown,
 # the name of your module
 'name': 'Simple Bash',
 # The short name of your module, will be used as a part of urls in tests
 'url': 'simple_bash',
 # Detailed description of your module
 'description': __doc__,
}

Step classes

Step classes are ordinary classes, but it is more convenient to inherit them
from any generic step. There are three generic steps at your service:

	trytry.core.steps.GenericStep: a generic step to execute an arbitrary
command in a virtual LXC environment

	trytry.simple_bash.steps.GenericStep a generic step to execute bash
one-liners. Can store the state of variables between commands

	trytry.simple_python.steps.GenericStep a generic step to execute Python
one-liners. Can store the state of variables between commands

Setup and teardown functions

The test flow calls setup function before starting the first test in the flow.
the trytry.core.utils.lxc.lxc_setup() is a good way to start.

Likewise, tye test flow calls teardown function after all tests have been
completed, and the trytry.core.utils.lxc.lxc_teartown() should be used
as a lxc_setup counterpart.

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Try-try 0.1 documentation

LXC configuration

Default configuration

Try-try security model takes advantage of LXC containers. You shouldn’t care
about LXC installation, if you just installed the package to play around on your
localhost intend to setup the web service in a very trusted environment.

We assume that you have a virtual or a real (bare-metal) server with operating
system supporting LXC containers. The server is probably dedicated to try-try
project, you have root privileges to it (it is required). Instructions below
assume that configuration is made for Ubuntu distribuion.

First before, install the LXC package

$ sudo apt-get install lxc

On-boot container launch is redundant in our environment. Open the file
/etc/default/lxc and change value LXC_AUTO from "true" to
"false"

The next step is to create one or more templates to work with. Create a new
file named lxc.conf with two lines:

lxc.network.type = empty
lxc.aa_profile = unconfined

Then create a new base template with minimal Ubuntu installation.

$ sudo lxc-create -n try-try -t ubuntu -f lxc.conf -- --trim

Option --trim creates minimalistic installation of the system.

Then create and configure a bunch of clones of this distibution. Feel free to
create as much distributions as you like. It’s fun

$ sudo lxc-clone -o try-try -n python
$ sudo lxc-clone -o try-try -n php
...

As these template images don’t have access to network, if you need extra
packages in there, you should install them by chrooting in the root directory.

For instance, below is a command which can be used to install PHP accessible
via command line in the image with the name “php”

$ sudo chroot /var/lib/lxc/php/rootfs bash -c 'apt-get update && apt-get install --yes --force-yes php5-cli'

Then you can check how it works by issuing the command

$ lxc-start -n php -- php -r '$foo = "hello world\n"; echo $foo;'
hello world

For more information about LXC managing visit https://help.ubuntu.com/12.04/serverguide/lxc.html

Speed-up lxc cloning

By default cloning a new environment takes about 10 seconds, but this
timespan can be significantly improved by leveraging btrfs snapshots.

apt-get install btrfs-tools
mkfs.btrfs /dev/<device-name>
mount /dev/<device-name> /var/lib/lxc
echo "/dev/<device-name> /var/lib/lxc/ btrfs defaults 0 0" >> /etc/fstab

Enjoy watching the list of btrfs subvolumes while creating new virtual images

btrfs subvolume list /var/lib/lxc/

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Try-try 0.1 documentation

Index

 Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Try-try 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Try-try team.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

